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Two nonlinear models of "nite-length cylindrical squeeze "lms are developed. The "rst "nite-length
model is formed using length-correction factors on a short cylindrical model, while the second
"nite-length model is constructed using side-leakage factors with an in"nitely long model. Each model
has seven force terms which are nonlinear functions of instantaneous cylinder position. The two
models are evaluated through experimental measurements using two geometrical con"gurations
where 50)6 mm and 25 mm diameter cylinders undergo 160 cases of radial and o!set-linear motions.
Comparing the theoretical predictions of squeeze force waveforms with measurements, and also with
previous models by Lu & Rogers, shows that the present "nite-length models are quite reasonable. By
investigating each force term, the present models are modi"ed slightly and better predictions are
obtained for most test cases. Without empirical corrections, the models tend to underestimate the
unsteady inertia terms and are unable to predict the frequency dependence of the viscous terms.
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1. INTRODUCTION

THERE ARE MANY MECHANICAL COMPONENTS such as shafts or tubes which are loosely sup-
ported. Frequently, the annular gaps between such components and their supports are
#uid-"lled. For journal bearings or squeeze-"lm dampers, the radial clearance is typically
only 0)1% of the radius. For other components such as pipes or tubes, the radial clearance
can be much greater, say 2 or 3% of the radius. Vibration of the components due to rotating
unbalance or #ow-induced vibration results in squeeze-"lm forces in the annual gaps. In
shell-and-tube heat exchangers with liquid shell-side #uids and circular supports, the
squeeze-"lm forces are the main source of damping. Accurate modelling of the squeeze-"lm
forces is very important to be able to predict the dynamic response of the component and
wear rates at the supports when metal-to-metal contact occurs.

If the length of the support is short compared to the diameter, the #uid in the clearance
space can be assumed to #ow in the axial direction. On the other hand, if the support length
is long compared to the diameter, the #ow is mainly circumferential; the same e!ect occurs if
there are end seals. In either of these extreme cases, closed-form two-dimensional (2-D)
solutions of the #uid velocities, pressure and forces can be obtained.
0889}9746/01/010171#36 $35.00/0 ( 2001 Academic Press



172 Y. HAN AND R. J. ROGERS
There are many publications about short and long cylindrical squeeze "lms, which are of
great help in understanding the e!ects of #uid inertia and the mechanics of squeeze #ow.
The majority of bearings in service and the con"guration of tubes and support plates in heat
exchangers, however, have length/diameter ratios in the range 0)5(¸/D(1)5; neither the
short nor the long cylindrical models can be applied accurately to these designs. The study
of "nite-length cylindrical models is therefore important for squeeze "lms used in applica-
tions such as rotating machinery and shell-and-tube heat exchangers.

The analytical methods available in the literature for "nite-length squeeze "lms may be
classi"ed in three categories, as Capone et al. (1994) have stated: (i) methods using
length-correction factors with a short bearing solution, for example, Barrett et al. (1980);
(ii) methods using side-leakage factors with an in"nitely long bearing solution, where the
widely accepted method is from Warner (1963) [Tichy (1987), San Andres & Vance (1987a),
Lu (1993), and Zhang & Roberts (1996) have used the same or similar ideas to account for
the length e!ects]; and (iii) methods using a variational approach with a Fourier series
expansion, where Hays (1959) may be a good example. Most of the publications in these
three categories deal with small to moderate squeeze-"lm Reynolds number #ow. Therefore,
#uid inertia is usually neglected to simplify the analysis or else only temporal inertia is
considered. The accuracy of these methods has been veri"ed for squeeze "lms with small
Reynolds numbers either through analysis or experimental tests.

Until now, no existing publications can be found which consider theoretically both the
"nite-length e!ects with arbitrary cylinder motions and the di!erent kinds of inertia in
squeeze-"lm damper-like structures. The studies of squeeze-"lm e!ects in heat exchangers
by Mulcahy (1980), Haslinger et al. (1990) and many others have shown the requirements of
this kind of study and also revealed that, without the aid of some approximations, even the
existing models are impossible to solve for some speci"c motions. Lu & Rogers (1994) used
side-leakage factors to obtain "nite-length squeeze-"lm forces from an in"nitely long model
for radial motions. The comparison between their theoretical results and experimental
measurements showed that the length-correction method is quite practical.

There have been numerous experimental investigations performed on squeeze-"lm
dampers used in rotating machinery, which are useful references for other squeeze-"lm
applications such as shell-and-tube heat exchangers. Examples can be seen in publications
by Tonnesen (1976), Tichy (1985), San Andres & Vance (1987c), Kinsale & Tichy (1989),
Rouch (1990), Arauz & San Andres (1993), and Zhang et al. (1994).

By comparison, there are few publications of experimental squeeze-"lm studies for heat
exchanger applications. Recent experimental studies of cylindrical squeeze "lms with
water are given by Rogers et al. (1990), Haslinger et al. (1990), Yu & Rogers (1991) and Lu
& Rogers (1994, 1995). In Lu & Rogers (1994), the normal instantaneous squeeze-"lm force
for a "nite length cylinder was measured for a cylinder with radial motions with zero or
nonzero initial eccentricity. In Lu & Rogers (1995), instantaneous normal and tangential
squeeze-"lm forces for o!set quasi-linear motion and elliptical motion were measured
for a system with ¸/D"1.

In order to gain further physical insight about "nite-length squeeze "lms, correction
factors for both short and in"nitely long models are used in the present study to obtain
"nite-length squeeze-"lm force models. The length-correction factor and side-leakage factor
methods used here closely follow the papers of Barrett et al. (1980) and Warner (1963). To
validate the two models, a total 160 experimental tests were carried out. Two diameters of
50)6 and 25 mm were used to study geometrical scaling e!ects. Radial motions from either
a centred or an eccentric position were "rst investigated. Similar to tests of circular-centred
journal motions in squeeze-"lm dampers [e.g., San Andres & Vance (1987c) or Jung et al.
(1991)], simple radial motions are very useful for the current experimental squeeze-"lm
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studies, since only some, in this case three of the seven, force terms are involved. Following
the radial motion studies, quasi-straight-line motion with initial eccentricity perpendicular
to the motion direction (called o!set-linear motion) was used to evaluate the remaining
force terms. This motion involves all the normal and tangential force terms and is easier to
perform than other general motions, since only one shaker is required.

2. FIRST MODEL: USING LENGTH-CORRECTION FACTORS WITH A
SHORT MODEL

Figure 1 shows the cylindrical squeeze-"lm con"guration for a "nite-length model with
length/diameter ratio in the range 0)5(¸/D(1)5 and the coordinates used. The Reynolds
equation for a "nite-length squeeze "lm can be expressed (Szeri 1980) as

1
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Lp

LhB#
L
Lx Ah3

Lp

LxB"6kE, (1)

where
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Figure 1. Con"guration of "nite-length cylindrical squeeze "lm with arbitrary motion.
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see Nomenclature in Appendix B for variable de"nitions. Following the idea from Barrett
et al. (1980) and employing variable separation techniques (Massey 1977), the pressure in
the squeeze-"lm #ow is obtained as

p(h, x)"!aA
R

bB
2

C1!
cosh (bx/R)

cosh (b¸/D)D , (2)

where

a"
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h3
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1

h3p
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LhB .

The coe$cient a is proportional to p
c
, the mid-plane (x"0) pressure of the cylindrical

squeeze "lm. The rest of the right-hand side of equation (2) acts as a length correction factor.
Equation (2) can be considered as an exact expression of the pressure for the "nite-length
squeeze "lm without considering the inertia e!ects.

When ¸/D@1, equation (2) reduces to the expression for a short model (Barrett et al.
1980), so that
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The mid-plane pressure for the short model derived from Reynolds' equation is given by
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where the approximation is achieved by neglecting terms of the order h/R in the expression
for E below equation (1). Using expressions (3) and (4) in equation (2), gives p (h, x) for the
short-length model

p (h, x)"p
sc
(h)A1!

4x2

¸2 B ; (5)

this is essentially as in Burwell (1951).
As an alternative, one may keep the expression for a+8p

sc
(h)/¸2, together with the

original hyperbolic length correction function of x, to obtain the approximate equation
from Barrett et al. (1980) for the pressure in the "nite-length squeeze-"lm bearing
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cosh (b¸/D)D . (6)

Because a+8p
sc
(h)/¸2 is for a short bearing, not for a "nite-length bearing, equation (6)

should be more accurate for small bearing lengths close to a short bearing. This is also
shown by the numerical study by San Andres & Vance (1987b).

To employ equation (6) in the application of arbitrary cylinder motion, a similar form of
nondimensional length-correction factors as in the paper by Barrett et al. (1980)
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has been used here for the normal and tangential directions. (Actually, to call them length
factors is more accurate, since p

c
(h) is only a centreline pressure.) In the above equation, the

b
m

are calculated using the pressure expressions obtained from the in"nitely long model
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approximation of Reynolds equation for circular-centred and radial motions. Based on the
study by Barrett et al. (1980), for circular-centred motion b

t
is given by

b2
t
"

(2#e2)
(1#e cos h) (2#e cos h)

. (8)

Substituting the above expression into equation (6) and integrating the pressure along the
cylinder surface fails to yield a closed-form analytical expression for the force. In order to
eliminate the dependence on h, the following averaging is de"ned in the present study:
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Integrating this equation yields

b2
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"(2#e2) [(1!e2)~1@2!(4!e2)~1@2]. (10)

Note the erratum note regarding this expression in Appendix A. Similarly, referring to the
paper by Barrett et al. (1980) for radial motion, we can obtain
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Using the pressure equation for the short model derived by Han & Rogers (2001), the
pressure for the "nite-length model can now be expressed as
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where the terms in large brackets are comparable to the a factor in equation (2), the D
i

(i"1, 2, 3) coe$cients depend on the velocity pro"le assumed, as well as the approximation
method (Han & Rogers 1996), and ¸n and ¸t are the length-correction factors de"ned in
equation (7) for radial and tangential motions of the cylinder centre, respectively;
(¸n#¸t )/2 on the last term is used to consider the combined e!ect of the motions. Other
combined weightings such as (¸n )¸t )1@2 were considered, however such expressions would
make integration to obtain analytical force expressions more di$cult.

The elementary radial squeeze-"lm force on an arc of width R dh in the "nite-length
model is
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The forces acting on the moving cylinder in the normal n and tangential t directions can be
written as
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Integrating the above two equations using Booker's (1965) integral table, the force equa-
tions for the "rst "nite-length model can be expressed as
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of the C
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coe$cients, the ratio of any inertia term to any viscous term is
proportional to c2. The length-correction factors after integrating equation (13), and
considering motions in the radial and tangential directions, are expressed as
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As ¸/D approaches zero, the factors 12(R/¸)2¸m
s

and 12(R/¸)2(¸n
s
#¸t

s
)/2 increase towards

unity, so that equations (16) and (17) approach the force expressions for short cylindrical
squeeze "lms.

3. SECOND MODEL: USING SIDE-LEAKAGE FACTORS WITH THE
INFINITELY LONG MODEL

The more familiar and widely accepted form of obtaining the pressure or force expressions
for "nite-length bearing dampers is to use side-leakage factors on an in"nitely long model
solution. The side-leakage factor is given by Warner (1963):
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where l can be ce, co, cv, un, or v, and m represents n or t, respectively, for normal or
tangential direction. Since it is very similar to the length-correction factor used for the
short-length model, this side-leakage factor should be able to take into account di!erent
kinds of motions and length e!ects. Because of the di$culty of obtaining the eigenvalues jm

l
from the boundary value problem, di!erent speci"c motion cases have been worked out.
Tolle & Muster (1969) determined the eigenvalues for the normal and tangential motions of
the journal centre for the pure viscous case. Falkenhagen et al. (1972) derived the jm

l
based

on Reynolds' equation for steady-state circular centred motion. No existing results of the
eigenvalues can be found considering the inertia e!ects for general motion of the journal
bearing centre. San Andres & Vance (1987a, b) proposed the following method to determine
the eigenvalues for circular centred motion:

¸m
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¸/DP0"(Force term of short model). (20)



TABLE 1
Eigenvalues for the side-leakage factors obtained using equation (21)*
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The side-leakage factor ¸m
l

can be approximately expressed by writing equation (19) as a
partial Taylor series
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l
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l
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The good accuracy of the method is demonstrated by comparing the analytical solutions
with the results from "nite-element solutions for most con"gurations of squeeze-"lm
dampers and di!erent orbit radii considered in a later publication by the same authors (San
Andres & Vance 1987c).

Based on the same idea, the force expression for the second "nite-length model, obtained
by applying the side-leakage factor to an in"nitely long model (Han & Rogers 2001), can be
written as
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Now C
1
"kR3¸/c3 and C

2
"oR3¸/c. Using the above procedure [equations (20) and

(21)], the approximate eigenvalue for each side-leakage factor in equations (22) and (23) was
determined and is listed in the Table 1. As ¸/D tends to in"nity, all the ¸m

l
factors increase

toward unity so that equations (22) and (23) approach the force expressions for a long
cylindrical squeeze "lm.

4. EXPERIMENTAL EQUIPMENT AND DATA ACQUISITION

The experimental test rig for measuring cylindrical squeeze-"lm forces was designed and
built by Lu & Rogers (1994). The apparatus has been described previously (Lu & Rogers,



Figure 2. Schematic diagram of data acquisition system set-up. FT: Force Transducer*Kistler
9251A; PS: Proximity Sensor*Bently Nevada 7200; CA: Charge Ampli"er*PCB 462A.
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1994, 1995). Using this test-rig, Lu (1993) demonstrated the validity of his "nite-length
cylindrical model for radial motions and his short model for both radial and arbitrary
motions. The experimental test rig and the data acquisition instruments have been modi"ed
and adjusted to meet new experimental investigation requirements. Figure 2 shows the
instrumentation arrangement used for the measurement of the test-rig forces and displace-
ments.

The #uid "lm forces are measured directly using two triaxial piezoelectric force trans-
ducers (Kistler 9251A) which satisfy moment requirements and provide high accuracy for
the test-rig alignment, as well as for the measurements. The two >-direction and two Z-
direction picoCoulomb charge signals from the force transducers (FT) pass through four
charge ampli"ers to be converted into low-impedance voltage signals. The output voltages
of the proximity sensors (PS) (Bently Nevada 7200 series) and the signals of the force
components go through a signal conditioning box (National Instruments SCXI-1000). The
signals then go to a data acquisition (DAQ) board (AT-MIO-16E-2) inserted in a 486
personal computer, where the signals are monitored, manipulated and processed using
custom-made LabVIEW software. The A/D converter resolution of the data acquisition
board is 12 bits or 4.9 mV. To have accurate absolute #uid viscosity, a thermocouple (Fluke
3830349) was used to measure the temperature of the water in the tank. The temperature
was then input into the corresponding LabVIEW program to calculate the absolute #uid
viscosity.

To calculate the squeeze-"lm forces acting on the moving cylinder using the theoretical
force equations, the displacement signals e (t) (in both> and Z directions) are synthesized in
the present study by using the Fourier series parameters

e (t)"
n
+
i/1

e
i
cos (2n f

i
t#u

i
)#e

0
, (24)

where e
i
and u

i
are the ith Fourier series parameters of the measured e(t) obtained by using

the LabVIEW program. f
i
is the ith order frequency, n is the "nite order of the Fourier
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series, and e
0

is the mean value of the displacement signal. In the present work n"8 was
used. The instantaneous velocity and acceleration of the cylinder centre are then obtained
by di!erentiating the above equation. This method avoids the ampli"cation of noise which
occurs when raw displacement signals are di!erentiated.

The two geometrical con"gurations listed in Table 2 were used. The length/diameter
ratios are nearly equal to 1 and the clearance/radius ratio is close to 0)03 in order to
represent common tube and support plate proportions in shell-and-tube heat exchangers.
The large con"guration is both easier to align and has larger force signals. The larger
clearance produces larger values of squeeze Reynolds number at low speeds so that
signi"cant e!ects of #uid inertia are easily produced. On the other hand, the size of the
small-diameter cylinder is closer to the size of tubes in heat exchangers. Therefore, the
experimental results from using the small geometrical con"guration may be more useful for
the design of heat exchangers.

Table 3 shows the combinations of test frequency, type of motion, initial eccentricity and
nondimensional oscillation amplitude for all the experimental test cases. There are 84 test
cases for the large geometry and 76 cases for the small geometry. The frequency ranges of
4}32 Hz for the large con"guration and 8}64 Hz for the small one were chosen with the aim
to have signi"cant squeeze "lm forces and also to cover the common tube vibration
TABLE 3
Experimental test cases for the two con"gurations

Cylinder Frequency Motion Initial eccentricity Amplitude
diameter (mm) (Hz) type (e

i
) (e

o
)

0 0)4, 0)6, 0)8
Radial 0)4 0)2, 0)4, 0)5

0)6 0)2, 0)3

0)3 0)4, 0)6, 0)850)6 4, 8, 16, 32
0)4 0)4, 0)6, 0)8

O!set-linear 0)5 0)4, 0)6, 0)7
0)6 0)4, 0)6
0)7 0)4, 0)5

0 0)4, 0)6, 0)8
Radial 0)4 0)2, 0)4

0)6 0)2

0)3 0)4, 0)6, 0)825 8, 16, 32, 64
0)4 0)4, 0)6, 0)8

O!set-linear 0)5 0)4, 0)6, 0)7
0)6 0)4, 0)6
0)7 0)4, 0)5

TABLE 2
Geometrical con"gurations of the tested squeeze "lms (mm)

Large Geometry Small Geometry

Cylinder diameter 50)60 25)00
Sleeve inside diameter 52)18 25)76
Sleeve length 51)33 25)00
Radial clearance 0)79 0)38
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frequency range. The radial motion tests were conducted using the horizontal shaker with
the initial eccentricity determined by the position of the micrometer on the translation stage
and the proximity sensor readouts. The o!set-linear motions were produced by using the
vertical shaker with the horizontal eccentricity ratios ranging from e

i
"0)3 to 0)7. Since the

e!ects of any misalignment of the cylinder to the sleeve are more clearly shown by
discrepancies between the force measurements and predictions for the o!set-linear motion
than for radial motion, all four proximity sensors were used; the displacement signals from
each end of the cylinder were averaged.

Based on the study by Han (1997), the squeeze-"lm force equations with an elliptical
velocity pro"le appear to give slightly more accurate results for the squeeze "lm between
a tube and its support plate. Therefore, the comparison of force results is based on the
equations with an elliptical velocity pro"le. The constant coe$cients from the iterative
method with A"1)2 (elliptical pro"le factor) are used, which are D

i
"12, 1)180, 2)775 and

1)466. This case provides the best agreement with measured results. In order to compare the
theoretical models with experimental waveforms, Lu & Rogers' (1995) multiple determina-
tion coe$cient R2 is used,

R2"1!
+N

i/1
(>

i
!>K

i
)2

+N
i/1
>2

i

, (25)

where >
i

and >K
i

are the measured and predicted force values at one instant in time,
respectively, and N is the total number of the data points of each waveform.

The following experimental results are divided into two parts. Section 5 gives the results
for radial motions and Section 6 presents the o!set-linear motion results. Both sections
discuss results for both the large geometry (LG) tests and for the small geometry (SG) tests.

5. EXPERIMENTAL RESULTS AND COMPARISONS FOR RADIAL MOTIONS

For convenience, we refer to the "nite-length model based on the short model with
length-correction factors as the &&"rst "nite-length model''. The &&second "nite-length model''
refers to the model based on the long model with side-leakage factors. The measured
squeeze-"lm forces are compared with the two theoretical predictions from the present
study and also with Lu's modi"ed theoretical models. To improve the prediction accuracy
of the present "nite-length models, some simple modi"cations are made based on evalu-
ations of each force term.

For radial motion, the squeeze-"lm force equations for both "nite-length models reduce
to
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where ¸
v
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take the corresponding length-correction or side-leakage factors and

Dg is 12(R/¸)2 for the "rst model and 1 for the second model.
Lu's modi"ed "nite-length model for radial motions can be expressed as (Lu & Rogers

1994)
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where a
1
"1)03, a

2
"1)31, a

3
"1)59, b

1
"0)73, and b

2
"0)23 are constant correction

coe$cients obtained for the large geometry con"guration. Re
i
"oDeR Dc/k is the instan-

taneous Reynolds number and ¸
i
"1!tanh (j

i
¸/D)/ (j

i
¸/D) (i"1, 2, 3) are side-leakage

factors. The eigenvalues j
i
in the side-leakage expressions can be found in Lu & Rogers

(1994).
One point that should be mentioned here is that the force and displacement sensors were

recalibrated before the present experimental tests. The sensitivity values of the force and the
displacement sensors are about 6% higher and 7% lower, respectively, than the sensitivity
values Lu used in his experimental study. These di!erences in sensitivities result in about
13% underestimation by Lu's theoretical predictions compared to the present experimental
measurements.

5.1. RADIAL MOTIONS WITH LARGE GEOMETRY

Figure 3 shows typical large-geometry experimental force results and predicted force
waveforms from the three theoretical models for radial motions with zero initial eccentri-
city and nondimensional oscillation amplitude e

o
"0)6. Figure 4 shows the measured and
Figure 3. LG squeeze-"lm forces for radial motion with e
o
"0)6: (a) f"4 Hz; (b) f"16 Hz; ==,

Measured; ) } ) } ), Lu's model; - - - -, 1st "nite; **, 2nd "nite.



Figure 4. LG forces for radial motion with e
i
"0)4 and e

o
"0)4: (a) f"4 Hz; (b) f"16 Hz; ==,

Measured; ) } ) } ), Lu's model; - - - -, 1st "nite; **, 2nd "nite.

182 Y. HAN AND R. J. ROGERS
predicted force waveforms for the cylinder vibration with initial eccentricity e
i
"0)4,

amplitude e
o
"0)4 and two di!erent frequencies. Figure 5 shows the multiple determination

coe$cients R2 for 20 large-geometry cases.
From such graphs, we found: (i) the agreement between the experimental measurements

and the theoretical predictions from Lu's model and the present "nite-length models are
reasonably good; (ii) all the theoretical predictions have similar tendencies for various
vibration eccentricities and frequencies; (iii) all the theoretical predictions tend to slightly
underestimate the peak force values; (iv) comparing the two present models, the second
"nite-length model produces better predictions; (v) better agreement between the experi-
mental measurements and theoretical predictions are found for the cases with frequencies
f"8 and 16 Hz for all three models; (vi) as the eccentricity values increase, the theoretical
under-predictions increase; (vii) there are some slight phase shifts in the cases with vibration
frequencies f"4 and 8 Hz; and (viii) for the cases with low frequencies (4 Hz) the experi-
mental squeeze-"lm forces are small ((1)0N for the case shown in Figure 3) for small
eccentricity and some noise can be seen, even though time averaging was performed.

Some exploration to modify the original theoretical equations has been done. Figure 6
shows all the force terms, their resultant forces and the experimental measurements for one
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period for the "rst and second "nite-length models for the case e
i
"0)4, e

o
"0)4 and

f"16 Hz. The trace of cylinder oscillation in the horizontal direction is also shown.
From the many cases conducted for radial motion with zero initial eccentricity, the

underpredicted values were found to be mainly due to the underprediction of the unsteady
inertia force term. Since the ratio of acceleration to velocity magnitudes equals the
frequency of motion, the dominant e!ect of the unsteady inertia term is more clear for
vibration with higher frequency. The present force equations have been modi"ed slightly by
dividing b

n
in equation (11) by a constant factor a

L1
in the "rst "nite-length model and by

multiplying the unsteady inertia term in the second model by a constant factor an
u2

. We
found that a

L1
"2 and an

u2
"1)3 give much better results.
Figure 5. R2 for LG radial motions with initial eccentricity: (a) e
i
"0)4; (b) e

i
"0)6; *s*, Lu's

model; - - -n- - -, "rst "nite; *h*, second "nite.



Figure 5. Continued
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Even though the contributions to the resultant forces from the viscous terms are small
compared with the unsteady inertia terms, through investigating all the test cases, we found
the phase shift to be proportional to the viscous terms. The "rst "nite-length model can be
improved by multiplying the viscous term by an

v1
"f /36#0)2. [A similar linear function of

frequency was used by Lu & Rogers (1994) to correct the viscous term.] No similar
modi"cation is applied to the second "nite-length model since here the viscous term causes
less phase e!ects and since no simple factor could be found.

Applying these correction factors, the modi"ed "rst and second "nite-length models for
radial motion can be summarized as
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Figure 6. Displacements of LG cylinder centre and squeeze-"lm forces of the two "nite-length
models for radial motion for f"16 Hz, e

i
"0)4 and e

o
"0)4.
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and
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where in equation (28)
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and an
v1

("f /36#0)2) and a
L1

("2) are correction factors for the viscous term and
length-correction factor in the normal force for the "rst model. The e!ect of a

L1
is to

increase ¸n
s

somewhat so that 12(R/¸)2 ¸n
s

is closer to unity; an
u2

("1)3) is the correction
factor for the unsteady inertia term in the normal force for the second model.
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Figure 7 gives the multiple determination coe$cients R2 for the modi"ed theo-
retical predictions for all 20 experimental cases of radial motions with initial eccen-
tricities. It is clear that the theoretical predictions by the present models are improved
after modi"cation. The predictions "t the measurements very well for f"8, 16 and 32 Hz
except one case with e

i
"0)6, e

o
"0)3 and f"32 Hz, for which clear under-predictions

around the peaks for all three models remain. Also, for the cases with low frequency
f"4 Hz, the R2 values are still not very good. By studying equation (25) and Figure 4(a), we
see that part of the reason for the lower R2 values is due to the low values of the measured
forces at 4 Hz.
Figure 7. R2 for LG radial motions with modi"ed models (a) e
i
"0)4; (b) e

i
"0)6; *s*, Lu's

model; - - -n- - -, modi"ed 1st "nite; *h*, modi"ed 2nd "nite.



Figure 7. Continued
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5.2. RADIAL MOTIONS WITH SMALL GEOMETRY

To further validate the theoretical predictions for radial motions, more experimental tests
were conducted with the small geometrical con"guration. There were 12 experimental cases
with zero initial eccentricity and 12 with initial eccentricity as shown in Table 3. Figure 8
shows the experimental and predicted force waveforms for radial motions with zero initial
eccentricity and nondimensional oscillation amplitude e

o
"0)6. Figure 9 presents the

multiple determination coe$cients for the 12 cases with initial eccentricity.
The reasonably good agreement between the theoretical predictions and the measured

results (except for some cases with f"8 and 64 Hz) demonstrates that the present models
(especially the second model) are also quite reasonable for radial motion for the small



Figure 8. SG squeeze-"lm forces for radial motion with e
o
"0)6: (a) f"8 Hz; (b) f"32 Hz; ==,

Measured; ) } ) } ), Lu's model; - - - -, 1st "nite; **, 2nd "nite.
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geometry. The phase shift and the noise in the measured force waveforms observed for the
large geometry for cases with low frequencies are still present. Because of the small force
levels for the small geometry, the noise is substantial at low frequencies. One other point
that should be mentioned here is the weakness of the multiple determination coe$cient for
the force waveforms of low magnitude and close to zero mean. Some R2 values are rather
low even though the waveforms are not so di!erent for the cases with low frequencies.

Comparisons were also made using the modi"ed force equations given by equations (28)
and (29). Figure 10 shows the multiple determination coe$cients R2 of the modi"ed
theoretical predictions for the 12 experimental cases with initial eccentricity. From the
graphs, one can see clearly that, except for case with e

i
"0)6, e

o
"0)2 and f"64 Hz, both

present theoretical predictions are improved after the modi"cations.

6. EXPERIMENTAL RESULTS AND COMPARISONS FOR
OFFSET-LINEAR MOTIONS

In this section, experimental studies for the cylinders performing sinusoidal motions in the
vertical direction, with initial eccentricities only in the horizontal direction (called o!set-
linear motions), are reported. There were 52 cases with the large geometry and another 52



Figure 9. R2 for SG radial motions;*s*, Lu's model; - - -n- - -, "rst "nite;*h*, second "nite.
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cases with the small geometry as shown in Table 3. The measured force waveforms are
converted to normal and tangential components for comparison with the predicted "nite-
length models given by equations (16) and (17) for the "rst model and equations (22) and (23)
for the second model.

The force waveforms are also compared with the predictions from the Lu & Rogers'
(1995) modi"ed short model which was developed using the large-geometry apparatus and
can be expressed as
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Figure 10. R2 for SG radial motions with modi"ed models;*s*, Lu's model; - - -n- - -, modi"ed
1st "nite; *h*, modi"ed 2nd "nite.

TABLE 4
The average correction factors for Lu's modi"ed short

model

Normal force Tangential force
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where
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k
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are instantaneous squeeze-"lm Reynolds numbers for the normal and tangential direction
forces. Dl

n
D and Dl
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D are the absolute values of the normal and tangential velocities. C
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are geometry coe$cients and Cn
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and M
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are nonlinear force

coe$cients given by Lu & Rogers (1995). The a
in

and a
it

are the average correction factors
for all experimental cases with o!set-linear motion and are listed in Table 4.

6.1. OFFSET-LINEAR MOTIONS WITH LARGE GEOMETRY

Figure 11 presents typical forces for the case with initial eccentricity e
i
"0)4 and amplitude

e
o
"0)6. The theoretical predictions are quite good for Lu's model and the present second

model, especially the tangential forces, whereas the "rst model produces lower force
Figure 11(a). LG force waveforms for o!set-linear motion with f"4 Hz, e
i
"0)4 and e

o
"0)6;==,

Measured; ) } ) } ), Lu's modi"ed short; - - - - - -, 1st "nite; ** *, 2nd "nite.



Figure 11(b). LG force waveforms for o!set-linear motion with f"16 Hz, e
i
"0)4 and e

o
"0)6;

==, Measured; ) } ) } ) } ) , Lu's modi"ed short; - - - - - -, 1st "nite; ***, 2nd "nite.
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predictions. All three models become less accurate as the total vibration amplitude or the
frequency increases. For lower frequencies, when the total instantaneous eccentricity
increases, the under-prediction from Lu's model becomes greater, while the phase shift of
the present models becomes smaller. As the frequency increases, the di!erences among the
three theoretical predictions increase for the cases with larger total amplitudes. The
deviations of the predicted total force around the waveform valleys for the second model
become larger as the total vibration amplitude or vibration frequency increases.

The multiple determination coe$cients for Lu's modi"ed short model and the two
present "nite-length models for 12 cases with e

i
"0)4 are shown in Figure 12. To show the

overall level of agreement, Table 5 lists the mean and standard deviation values of the
determination coe$cients for each model for all 52 large geometry cases. Lu's modi"ed
short model has a mean coe$cient of 0)950, the second model is relatively close at 0)913,
while the "rst model is lowest at 0)798. As the amplitude or the initial eccentricity increases,
the errors tend to be somewhat larger, especially for the "rst model.

In the previous section for radial motion, the normal force equations of the two present
models are each modi"ed slightly by using constant or linearly varying correction factors.
Similar modi"cations are now presented for the o!set-linear motion tests, in order to



Figure 12. R2 for LG o!set-linear motions with initial eccentricity e
i
"0)4; *s*, Lu's model;

- - -n- - -, 1st "nite; *h*, 2nd "nite.

TABLE 5
Average determination coe$cients for total force waveforms for o!set-linear motions

Large Geometry (52 cases) Small Geometry (52 cases)

Model Mean R2 Standard dev. Mean R2 Standard dev.

Lu's modi"ed short 0)950 0)055 0)845 0)139
First "nite 0)798 0)063 0)706 0)236
Second "nite 0)913 0)049 0)829 0)168
Modi"ed "rst "nite 0)936 0)042 0)797 0)305
Modi"ed second "nite 0)968 0)031 0)923 0)094
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improve the prediction accuracy and also to explore the weaknesses of the models. From
the results in this section, one can see that the following need improvement:

(i) the under-prediction of the normal forces for both models and the tangential forces
for the "rst model, for motions with large amplitude and high frequency;

(ii) the deviations around the waveform peaks in the normal forces for cases with large
amplitude and high frequency for the second "nite-length model;

(iii) the phase shifts in the tangential forces for both models and in the normal forces for
the "rst model at low frequency.

The task of modifying the two general theoretical equations looks much more complic-
ated than for the equations for radial motion. A clear understanding of the contributions of
each force component term for various frequencies and vibration amplitudes becomes
prerequisite to understanding the squeeze-"lm forces and building better models. As an
example, Figure 13 presents the individual force term waveforms, their resultant forces and
the measured forces in the normal and tangential directions for the second "nite-length
model for f"8 Hz, e

i
"0)4 and e

o
"0)6. The displacement of the cylinder centre is also

displayed. In this example, the trace of the cylinder centre forms a narrow "gure eight. At
higher frequencies, the path has a narrow ellipse-like form. The small oscillations of the
cylinder centre in the > direction are due to various complicated inertia e!ects, slight
misalignment and other unseen problems. This e!ect is fully taken into account in the force
calculations since the equations use the actual cylinder motions in both directions.

By comparing the force terms, their resultant and measured forces in the normal and
tangential directions, we found the following.

(i) Since the unsteady inertia term is always dominant over the other terms, the
underprediction of the total force is mainly due to the unsteady inertia force term in the
normal direction. Therefore, the deviations can be reduced by increasing the normal-
direction unsteady inertia term.

(ii) Around the valleys of the total force waveforms, the normal viscous and convective
inertia terms pass through zero, while the normal unsteady and centripetal inertia terms
become the only contributors to the resultant forces, but with opposite signs. This suggests
that the magnitude of centripetal inertia term needs to be increased.

(iii) The phase shift of the normal and tangential forces is mainly a!ected by the viscous
terms. At low frequency, the contributions of the viscous and unsteady inertia terms are
comparable and the phase shift of the predicted force waveforms with respect to the
measured waveforms is positive. As the frequency increases, the relative contribution of the
viscous term decreases and the unsteady inertia term becomes the dominant term, so that
the phase shift decreases and becomes negative for f"32 Hz. In other words, the viscous
term is over-predicted for low-frequency motion and under-predicted at high frequency.
This behaviour of the viscous force is very similar to what Lu & Rogers (1995) found.
El-Shafei (1988) also made similar statements.

To achieve the highest determination coe$cients and avoid the deviations around the
waveform valleys in the total forces, three correction factors are used for each "nite-length
model. The modi"ed "rst "nite-length model is expressed as
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Figure 13. Displacements of LG cylinder centre and o!set-linear squeeze "lm forces for the second
"nite length model for f"8 Hz, e

i
"0)4 and e

o
"0)6.
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TABLE 6
Correction factors for the modi"ed "rst and second "nite

length model

First "nite-length model Second "nite-length model
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where ¸m
s

(m"n or t) is given by equation (30) where b
n
becomes b

m
, and an

v1
and at

v1
are

correction factors for the viscous terms in the normal and tangential forces. The modi"ed
expressions for the second "nite-length model are
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where at
v2

, an
u2

and a
ce2

are correction factors for the viscous term in the tangential force and
the unsteady and centripetal inertia terms in the normal force, respectively.

The best values or expressions for the correction factors were found by trial and error and
are listed in Table 6. [Time constraints made impractical the use of more rigorous
least-squares procedures, such as that used by Lu & Rogers (1995)]. The same values as
used for radial motions are again used here. Unlike the other factors, a

ce2
is a constant

factor added to the inertia force coe$cient M
ce

. The value of a
ce2

was obtained through
comparison of the force coe$cients M

ce
from the present second model and the study by

San Andres & Vance (1986), as well as by trial and error.
Figure 14 shows examples of measured and predicted force waveforms using the two

modi"ed "nite-length models for e
i
"0)4, e

o
"0)6 and f"4 and 16 Hz. Compared to the

waveforms in Figure 11, the agreement has clearly improved. Since it is not easy to know the
frequency when simulating the motion of a heat exchanger tube, the same cases have also
been run without the corrections to the viscous terms which are linear functions of
frequency. Figure 15 shows that the agreement has worsened somewhat, especially for the
"rst model at the lower frequency.

It was found that the values for all three correction factors for each model are very
reasonable for almost all the cases conducted in the present study. We found that the
unsteady inertia terms and the viscous terms in the normal direction behave in a very
similar manner as in the radial motion cases. The greatest improvement to the theoretical
prediction is made by increasing the unsteady inertia terms in both directions for the "rst
model (using the length correction factor adjustment a

L1
) and in the normal direction for

the second model. The e!ects of the phase shift (in both models) and the deviation around
the waveform valleys (in the second model only) on the total force are relatively small and
can be neglected.

The multiple determination coe$cients for cases of e
i
"0)4 with e

o
"0)4, 0)6 and 0)8 for

the modi"ed "nite-length models are shown in Figure 16. Clearly, they are much improved
compared to the values in Figure 12. The mean and standard deviation R2 values for the
two modi"ed models for all 52 large-geometry cases are listed in Table 5. The values are
substantially higher for the modi"ed models and are quite reasonable.
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6.2. OFFSET-LINEAR MOTIONS WITH SMALL GEOMETRY

This section presents the results for the 52 o!set-linear experimental cases for the small
geometrical con"guration. Figure 17 shows typical force waveforms with initial eccentricity
e
i
"0)4 and nondimensional oscillation amplitude e

o
"0)6. The predicted waveforms are

based on the unmodi"ed "nite-length equations (16, 17) and (22, 23) and Lu's equations (31).
Generally, the results of the measured and predicted forces are similar to those for the large
geometrical con"guration and are not bad.

The mean and standard deviation R2 values are given in Table 5. The mean values for the
small geometry are about 11% lower than those for the large geometry. For some cases with
large oscillation amplitude, the agreement between the theoretical predictions and experi-
mental measurements is poor. The worst R2 values are from cases with e

i
"0)7 and e

o
"0)5.
Figure 14. LG force waveforms for o!set-linear motion with e
i
"0)4 and e

o
"0)6, where the

present models are modi"ed by all six correction factors: (a) f"4 Hz; (b) f"16 Hz;==, Measured;
- - - - - -, 1st "nite; ***, 2nd "nite.
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Part of the reason could be the alignment of the cylinder and its support sleeve. Due to the
smaller size of the cylinder and the smaller clearance between the cylinder and the sleeve, the
alignment for the small geometry is much more di$cult than for the large one. Comparing
predictions from the two present models with the measured forces, the second "nite-length
model clearly gives better values than the "rst model for all cases. The agreement between
the measurements and the theoretical predictions from Lu's modi"ed short model and the
second "nite-length model are at the same level; the second "nite-length model has better
predictions for f"8 and 16 Hz, while Lu's modi"ed short model gives slightly better
predictions for f"32 and 64 Hz.

The phase shifts reported in the preceding sections for the theoretical models are
observed again for the o!set-linear motions with the small geometry. At the lowest
frequency, f"8 Hz, the waveforms of the present models and Lu's model give the largest
phase shifts with respect to the measured force waveforms of all the experimental cases
conducted in the present study. The phase shifts in the total forces from the present models
are positive and about 25}303, whereas Lu's model gives negative phase shifts with values
between 30 and 503. As the frequency increases, the phase shift decreases. At f"64 Hz, the
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phase shifts are very small for the three models and can be neglected. This is attributable to
the relative importance of the viscous terms at low frequencies and the fact that the ratio of
the viscous terms to the unsteady inertia terms increases as the clearance (squared)
decreases.

The calculated forces in the normal direction are not as good as those in the tangential
direction. Compared with the normal direction forces for the large geometry, the normal
direction forces for the small geometry have even clearer deviations around the waveform
peaks between the theoretical and measured forces. Consequently, this causes deviations in
the total theoretical forces from the measured total forces around the waveform valleys. As
the frequency increases, the deviations become more obvious.

Based on the observations of the 52 cases and the comparisons of each force term (not
presented in this paper), we found that equations (32)} (35) with the six correction factors
Figure 15. LG force waveforms for o!set-linear motion with e
i
"0)4 and e

o
"0)6, where the

present models are modi"ed with three correction factors (without modifying the viscous terms): (a)
f"4 Hz; (b) f"16 Hz; ==, Measured; - - - - - -, 1st "nite; ***, 2nd "nite.
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can still be used here to obtain improved theoretical predictions. The only di!erence in the
factors shown in Table 6 is in the expressions for the three viscous factors where 36 is
replaced by 64 (the maximum frequency). Using the six correction factors some improve-
ment has been achieved, particularly for the total forces. The mean and standard deviation
R2 values for all 52 small-geometry cases for the modi"ed equations are also listed
in Table 5. The modi"ed second "nite-length model has a mean R2 of 0)923 for the
small geometry which is only 5% lower than for the large geometry. By comparison,
the "rst model is not as good with the R2 value 15% lower than that for the large-geometry
value.

Overall, the agreement in the prediction of total force waveforms for the small geometry
is fairly reasonable even though the normal force and tangential force tend to be substan-
tially over-predicted and under-predicted, respectively.

7. CONCLUSIONS

Two nonlinear cylindrical squeeze-"lm force models have been derived for "nite-length
geometries for arbitrary cylinder motions. The "rst "nite-length model is formed using



Figure 16. R2 for LG o!set-linear motions with modi"ed models and e
i
"0)4;*s*, Lu's model;

- - -n- - -, modi"ed 1st "nite; *h*, modi"ed 2nd "nite.
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radial and tangential length-correction factors on a short model. The second "nite-length
model is constructed using side-leakage factors with an in"nitely long model. In order to
validate the models, 160 experimental case studies with two geometrical sizes have been
undertaken. A multiple determination coe$cient is used to statistically compare the force
waveforms.

The experimental radial motion studies involved 24 cases with zero initial eccentricity
and 32 cases with nonzero initial eccentricity. Typical experimental force waveforms and the
theoretical predictions using the present "nite length models and that of Lu & Rogers (1994)
are presented. These tests involved only three of the seven nonlinear force terms in each
model. Through investigations of each force term, the present "nite-length models were
modi"ed slightly. The unmodi"ed models are reasonably good in predicting squeeze-"lm
forces for most of the cases conducted, while the modi"ed models give improved prediction
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accuracy and better results. Comparing the two present "nite-length models, the second
one, based on the long model, produces better agreement.

Similar results were obtained for 104 experimental cases where the initial eccentricity is
perpendicular to the line of motion. The unmodi"ed "nite-length equations give quite good
predictions for most cases. By exploring each force term, it was found that the correction
factors from the radial tests are still reasonable. The "nal modi"ed models each have three
correction factors. In the "rst "nite-length model, which is based on the short model, both
the normal and tangential viscous terms have a factor which is a linear function of
frequency, which decreases the viscous terms at low frequency. As well there is a factor
which increases the e!ect of each length-correction factor. For the second "nite-length
model, which is based on the long model, the main correction is to the normal unsteady
inertia term which is multiplied by 1)3. There is also an additive factor in the centripetal
inertia term and a linear function of frequency in the tangential viscous term.

Han & Rogers (2001) showed (in Figure 5) that the two long-model tangential inertia
force terms are very di!erent from those reported by El-Shafei & Crandall (1991). The
Figure 17(a). SG force waveforms for o!set-linear motion with f"8 Hz, e
i
"0)4 and e

o
"0)6;==,

Measured; ) } ) } )} ) , Lu's modi"ed short; - - - - - -, 1st "nite; ***, 2nd "nite.



Figure 17(b). SG force waveforms for o!set-linear motion with f"32 Hz, e
i
"0)4 and e

o
"0)6;

==, Measured; ) } ) } ) } ) , Lu's modi"ed short; - - - - - -, 1st "nite; ***, 2nd "nite.
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present experimental results for the second model show indirectly that the Han and Rogers
long model should be more accurate to predict squeeze-"lm forces, since no correction
factors are needed to correct the tangential inertia force terms.

Lu and Rogers (1994, 1995) also observed a requirement to increase the normal unsteady
inertia term by 30% and the need to have viscous terms which are linear functions of
frequency. They hypothesized that these problems were due to the choice of a parabolic #ow
velocity pro"le, the approximation method used to derive the equations, and/or their edge
e!ects modelling. The present work has shown that despite the use of analytical length-
correction/side-leakage factors in order to obtain "nite-length models, as well as the use of
nonparabolic (elliptical) velocity pro"les, and three di!erent approximation methods (Han
& Rogers 2001), similar weaknesses in the unsteady inertia terms and the viscous terms have
been observed.

The observation that the viscous terms vary approximately linearly with frequency
implies the presence of velocity-squared damping, e.g., a force term proportional to eR DeR D.
This is commonly observed as the drag force on an object having motion relative to a #uid.
Many experiments have shown that the #ow separation around the body results in
a pressure "eld which gives a drag force proportional to the velocity squared. This
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behaviour has been observed previously in cylindrical squeeze "lms by Mulcahy &
Miskevics (1980). Unfortunately the pressure "eld caused by #ow separation cannot be
predicted by models based on the Navier}Stokes equations. This e!ect can therefore only be
included by empirical models obtained from experiments.

Similarly, theoretical modelling of the convective #ows in and out of the squeeze "lm (i.e.,
edge e!ects) is also di$cult or impossible to do. Although the present "nite-length models
are able to predict the squeeze-force waveforms quite well, it is now clear that the edge
e!ects and velocity squared damping in cylindrical squeeze "lms typical of heat exchanger
equipment cannot be accounted for by thorough modelling using Navier}Stokes equations,
but instead require empirical testing.
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APPENDIX A: ERRATUM ON b2
t

After the present work was completed, it was found that the expression used for b2
t

from
Barrett et al. (1980) is incorrect. The correct expression for b2

t
is shown in equation (10). The

incorrect expression for b2
t

used in the present work is

b2
t
"

2#e2
2e2 A2#

2#e2
(1!e2)1@2

!

8#e2
(4!e2)1@2B . (A1)

Comparisons of values of the tangential length-correction factor ¸t
s
(for the "rst "nite

length model) for a wide range of eccentricities for ¸/D"1 have been carried out. The new
¸t
s
values are only slightly larger than the old values for low eccentricities. For example, the
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new ¸t
s
value is less than 5% larger for eccentricities up to 0)67 and only 15% larger for

e"0)8.
The e!ect of the error in b2

t
is therefore considered small.

APPENDIX B: NOMENCLATURE

A shape factor of elliptical velocity pro"le (ratio of ellipse minor axis to h )c
c radial clearance
C

i
geometry coe$cients, i"1, 2

C
v

viscous (damping) force coe$cient
D, R cylinder diameter and radius
D

i
constant force coe$cients, i"1, 2, 3, 4

e instantaneous displacement of cylinder centre
eR , eK instantaneous velocity and acceleration of the cylinder centre
f oscillation frequency
F squeeze-"lm force on the cylinder
h instantaneous local squeeze-"lm thickness
¸ cylinder length
LG, SG large (50)6 mm) and small (25 mm) geometrical con"gurations
¸m
l

side-leakage factor for long model; l"v, un, cv, ce, co; m"n or t
¸m
s

length-correction factor for short model; m"n or t
M

ce
centripetal inertia force coe$cient

M
co

Coriolis inertia force coe$cient
M

cv
convective inertia force coe$cient

M
un

unsteady inertia force coe$cient
p pressure in squeeze "lm
p
a

pressure far from the "lm edge
p
c

mid-plane pressure
Re squeeze-"lm Reynolds number (Re"uc2/v)
R2 multiple determination coe$cient (equation (25))
X, >, Z "xed coordinate directions (Figure 1)
am
i

correction factors; i"¸1, v1, ce2, u2, v2; m"n, t or nothing
c (1!e2)1@2
e instantaneous eccentricity ratio e

i
/c

e
i

initial eccentricity ratio e
i
/c

e
o

nondimensional oscillation amplitude (reference length c)
h, u angles (Figure 1)
j
l

eigenvalues of leakage factors; l"v, un, cv, ce, co
k absolute #uid viscosity
l kinematic #uid viscosity
o #uid mass density
t, tQ , tG instantaneous angle, angular velocity and acceleration of cylinder centre
u characteristic circular frequency
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